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LETTER TO THE EDITOR 

Size of rings in two dimensions 

V Privmant and J RudnickS 
t Department of Physics, 405-47, California Institute of Technology, Pasadena, CA 91 125, 
USA 
$ Department of Physics, University of California at Los Angeles, Los Angeles, CA 90024, 
USA 

Received 29 May 1985 

Abstract. We report enumeration results for the radius of gyration and caliper size distribu- 
tion of self-avoiding unrooted polygons of up to 28 steps, on the square lattice. The (second 
moment) radius of gyration series is sufficiently smooth to allow verification of the theoreti- 
cal prediction u(rings) = v(wa1ks) to 0.2% accuracy. 

It is generally believed that the size exponent, v, for self-avoiding rings (polygons) is 
identical to that of self-avoiding walks. Indeed, in the n + 0 limit of the n-vector model 
(de Gennes 1972, des Cloizeaux 1975), the energy-energy correlation function will 
describe distribution of vectors connecting all possible pairs of sites on the ring. Thus 
the mean squared radius of gyration of N-step rings, 

(RL)l’Z- N”,  

grows with exponent Y which is identical to that of the walks, end-to-end distance of 
which is distributed according to spin-spin correlation (in the n + 0 limit). 

An alternative argument is based on the renormalisation group ideas. Real space 
renormalisation along a chain involves a local transformation which should not be 
sensitive to the fact that the ends are joined somewhere (see Family (1982) and 
references therein). Obviously, this assertion must be taken with caution. One must 
prove that no significant longer-range interactions are generated along the chain: this 
has been established to first order in the E = 4 - d expansion by Lipkin er a1 (1981) 
and by Prentis (1982). 

Numerical study of the size of self-avoiding rings was done mainly by Monte Carlo 
(MC) methods, for three-dimensional systems: see Baumgartner (1982), Bishop and 
Michels (1985), and earlier work quoted by these authors. We are aware only of d = 3 
series-enumeration studies, by Rapaport (1979, for the FCC lattice and by Wall and 
Hioe (1970) for the diamond lattice. Both the series analyses and most of the MC 
studies found an apparently larger exponent for rings than for walks (in d = 3) with 
the deviation, AV/., of at least 2% (up to 10% in some cases). However, Baumgartner 
(1982) argued that the discrepancy is due to the low quality of the available data. 

We report here study of the size of rings up to 28 bonds, on the square lattice. We 
concentrate on the d = 2 self-avoiding rings (unrooted N-step polygons) for several 
reasons. First, fluctuations are generally stronger in lower dimensions. Thus, there is 
a better chance of seeing deviation from v(walks), if any. Secondly, for d = 2  walks, 
v = 2 is known exactly (Nienhuis 1982). Lastly, we devised an enumeration method 
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which is more efficient than techniques used in earlier direct enumerations (up to 
N = 26) of the number, p N ,  of distinct rings (Sykes et a1 1972, and references therein). 
Recently, Enting and Guttmann (1985) counted rings up to N = 46; however, it is not 
indicated if their technique can be used to measure ring sizes. Note that only rings 
of N = 4, 6, 8, . . . steps exist on the square lattice. 

Our method is applicable only in d = 2 and, briefly, consists of generating all compact 
(no holes) site animals on the dual lattice. In two dimensions, these animals are in 
one-to-one correspondence with the rings on the original lattice. The results for ( R k )  
are reported in table 1. The radius of gyration was calculated according to the site 
content (site coordinates). In table 2 we report the distribution of the number of rings 
according to their caliper size (projection) along a fixed square-lattice axis. Note that 
the bond length was measured, e.g. the 4-step ring 

has length 1, despite the fact that two lattice rows are involved. The enumeration took 
about 160 h of CPU time on the RIDGE computer, of which about 100h can be 
attributed to the calculation of (R:8) .  

The ( R k )  series was analysed by standard ratio-type techniques. The sequence of 
approximants 

YN = ln[(R”)/(R”-*>1/2 ln ( N / N  - 21, 

vN = u +constant x N-’ + o(N- ’ ) .  

(2) 

(3) 

is fitted to the form 

We will not lay out all the details of the analysis but describe the results. One finds 
that the values of 8 near 6 = 2 provide the most stable fit. This value is an apparent 
convergence exponent since asymptotically the leading corrections to scaling decay 
slower provided they are the same as for walks (see an overview by Privman 1984). 

Table 1. Mean-squared radius of gyration, (RL), for N-step polygons. The values listed 
are integers pN(Rk)N2/2,  where p N  is the number of distinct (unrooted) polygons. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

4 
33 

300 
2582 

21 436 
173 414 

1377 028 
10 774 890 
83 313 372 

637 932 666 
4845048412 

36545191560 
274 032 229 984 

1 
2 
7 

28 
124 
588 

2938 
15 268 
81 826 

449 572 
2521 270 

14 385 376 
83 290 424 
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Table 2. The number of N-step polygons having caliper size (projection) of D bonds along 
a fixed lattice axis. 

N I 2  D Number N I 2  D Number 

2 
3 
3 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 
8 

8 
9 
9 
9 
9 
9 
9 
9 
9 

10 
IO 
10 
10 
10 
10 
10 
10 
10 

a 

1 
1 
2 
1 
2 
3 
1 
2 
3 
4 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
4 
5 
6 
7 
8 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
1 
1 
1 
5 
1 
1 

13 
13 

1 
1 

27 
70 
25 

1 
1 

55 
254 
236 

41 
1 
1 

113 
803 

1352 
607 
61 

1 
1 

229 
2443 
607 5 
5123 
1311 

85 
1 
1 

459 
7282 

24 589 
31 412 
15 461 

2508 
113 

1 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
919 

21 362 
94 948 

162 418 
125 756 
39 632, 

4390 
145 

1 
1 

1841 
61 963 

356 954 
769 241 
816 998 
417 035 

89 874 
7181 

181 
1 
1 

3685 
178 325 

1318 233 
3472 899 
4655 629 
3363 957 
1195971 
185 317 

11 137 
221 

1 
1 

7371 
510 460 

4805 207 
15 232 810 
24 573 941 
22 898 120 
11835447 

3056 032 
354 223 

16 546 
265 

1 

Indeed, a plot of vN against 1/N2, see figure 1, reveals a (very small) oscillation 
superimposed over the monotonic increase, which may be a reflection of an interplay 
of several power-law contributions to vN - v. Although the single-correction term 
assumption is not really correct for N S 28, we cannot do a more sophisticated fit due 



L792 Letter to the Editor 

0 0,001 0.002 0.003 0.004 
l/NZ 

Figure 1. Plot of the estimates vN defined by relation (2), against 1/N2, for N = 
16, 18,. . . ,28 .  The value of v(wa1ks) = 2 is also marked. 

to the shortness of the series. From figure 1 and our other analyses with varying 8, 
we propose 

v(rings) = 0.750* 0.0015. (4) 

This value is consistent with v(wa1ks) =$ 
From the data of table 2, one can also generate caliper diameter ( D )  moments. 

We studied ( D )  and (D2) .  These quantities provide generally less accurate estimates 
of U due to proliferation of correction terms (see Privman er al 1984). A fit to the 
form ( 3 )  for both moments is most stable when 8 is a few per cent below 8 = 1, and 
extrapolation suggests values clustering around v(rings) = 0.759. If we impose 8 = v 
as suggested by Privman er a1 (1984), for caliper moments, then values near v(rings) = 
0.752 are found. We believe that the deviation of the caliper diameter exponent 
estimates from (4) and v(wa1ks) is due to that the asymptotic behaviour cannot be 
seen in the existing data, similarly to the d = 3 studies described above. 

In summary, we presented the first (to our best knowledge) study of the size 
exponent, v, for self-avoiding rings in two dimensions. We conclude that the theoretical 
expectation v(rings) = v(wa1ks) holds to within 0.2% accuracy, see (4), based on the 
analysis of the radius of gyration series to order N = 28. 

We are indebted to M Cross for providing the computer facilities (which are supported 
by the NSF through grant DMR-84-12543) and to him and F Family for instructive 
discussions. VP acknowledges the award of a Bantrell Fellowship by the California 
Institute of Technology. JR wishes to thank the NSF for partial support through grant 
DMR-81-15542. 

References 

Baumgartner A 1982 J. Chem. Phys. 76 4275 
Bishop M and Michels J P J 1985 J. Chem. Phys. 82 1059 
de Gennes P G 1972 Phys. Lett. 38A 339 
des Cloizeaux J 1975 L Physique 36 281 
Enting I G and Guttmann A J 1985 J. Phys. A: Math. Gen. 18 1007 



Letter to the Editor L793 

Family F 1982 Phys. Lerr. 92A 341 
Lipkin M, Oono Y and Freed K F 1981 Macromolecules 14 1270 
Nienhuis B 1982 Phys. Reo. Leu. 49 1062 
Prentis J J 1982 J. Chem. Phys. 76 1574 
Privman V 1984 in Kinetics of Aggregarion and Gelation ed F Family and D P Landau (Amsterdam: 

Privman V, Family F and Margolina A 1984 J. Phys. A: Marh. Gen. 17 2837 
Rapaport D C 1975 J. Phys. A: Math. Gen. 8 1328 
Sykes M F, McKenzie D S, Watts M G and Martin J L 1972 J. Phys. A:  Marh. Gen. 5 661 
Wall F T and Hioe F T 1970 1. Phys. Chem. 74 4416 

North-Holland) p 253 


